54 research outputs found

    The role of obscured activity in galaxy formation

    Get PDF
    In this thesis I investigate the formation and evolution of the galaxies that eventually form the colour-magnitude relation (CMR) in local galaxy clusters. I survey galaxies that lie on the CMR in nine massive clusters at z~0.2, environments in which the build-up of the faint end of the CMR is still underway. I show that there are relatively few dwarf galaxies on the CMR in the outer, low-density regions of clusters, but that their fraction increases towards higher-density regions as the cluster environment transforms infalling, blue, star-forming galaxies into red, passive, CMR galaxies. However, in the highest density regions, at the very centres of clusters the relative fraction of dwarf galaxies on the CMR is suppressed, evidence that, dwarf galaxies in the highest density regions at z~0.2 are dynamically disrupted. I then use 1.1-mm observations of a massive cluster at z=0.54 to search for active, star-forming cluster galaxies, which would transform into CMR galaxies at lower redshifts as the star-formation terminates. I detect 36 sources in observations of 0.1 deg^2 of the cluster centre and identify counterparts to ~50% of these submillimetre galaxies (SMGs) using radio, 24-um and IRAC data. Photometric redshifts suggest that at most two of the SMGs are potential cluster members. If this is the case they each have far-infrared luminosities of ~5x10^11 solar luminosities and star-formation rates (SFRs) of ~50 solar masses per year -- a significant fraction of the combined SFR of the cluster. I next consider 126 SMGs detected in an 870-um survey of the Extended Chandra Deep Field South (ECDFS). I derive a photometric redshift distribution of 74 robust radio, 24-um and IRAC-identified counterparts that peaks at z=2.2. An analysis of sources within the positional error circles of unidentified SMGs identifies a population of likely counterparts with a redshift distribution that peaks at z=2.5\pm0.3 and likely comprises ~60% of the unidentified SMGs. The remainder are not detected in our IRAC imaging and likely lie at z>3. In total, I find that ~30% of all SMGs are at z>3, and the median redshift of all S_{870um}>4 mJy SMGs is z=2.5\pm0.6. The contribution of SMGs to the global SFRD also peaks at z~2 and SMGs with S_{870um}>4 mJy and S_{870um}>1 mJy provide ~5% and ~50% of the global total at z~2, respectively. Analysis of the projected real-space cross-correlation function of SMGs at z=1-3 with IRAC-selected galaxies shows that SMGs are strongly clustered and reside in dark-matter halos of mass (6^{+12}_{-5})x10^{12} solar masses. This halo mass is comparable to that of quasars and the mass at which major mergers are most efficient at triggering starburst activity. I conclude that SMGs at z~2 have star-formation rates, stellar masses and clustering properties that suggests that they are the likely progenitors of the massive CMR galaxies that dominate local clusters

    Speedy galaxy evolution:Mature features are detected in an early galaxy

    Get PDF

    Quantifying the UV-continuum slopes of galaxies to z ˜ 10 using deep Hubble+Spitzer/IRAC observations

    Get PDF
    Measurements of the UV-continuum slopes β provide valuable information on the physical properties of galaxies forming in the early universe, probing the dust reddening, age, metal content, and even the escape fraction. While constraints on these slopes generally become more challenging at higher redshifts as the UV-continuum shifts out of the Hubble Space Telescope bands (particularly at z > 7), such a characterization actually becomes abruptly easier for galaxies in the redshift window z = 9.5-10.5 due to the Spitzer/Infrared Array Camera 3.6 μm-band probing the rest-UV continuum and the long wavelength baseline between this Spitzer band and the Hubble Hf160w band. Higher S/N constraints on β are possible at z ˜ 10 than at z = 8. Here, we take advantage of this opportunity and five recently discovered bright z = 9.5-10.5 galaxies to present the first measurements of the mean β for a multi-object sample of galaxy candidates at z ˜ 10. We find the measured βobs's of these candidates are -2.1 ± 0.3 ± 0.2 (random and systematic), only slightly bluer than the measured β's (βobs ≈ -1.7) at 3.5 < z < 7.5 for galaxies of similar luminosities. Small increases in the stellar ages, metallicities, and dust content of the galaxy population from z ˜ 10 to z ˜ 7 could easily explain the apparent evolution in β

    Women in physics in the United Kingdom : Successes, challenges, and wider diversity

    Get PDF
    Progress is being made in improving the environment for women in physics in the United Kingdom, although the proportion of women in the subject remains stubbornly low. Several initiatives have been launched to help encourage girls enter the field and to retain women. The sector is starting to target broader aspects of equality, diversity, and inclusion

    An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South : The Redshift Distribution and Evolution of Submillimeter Galaxies

    Get PDF
    Accepted by ApJ. 45 pages, 16 figuresWe present the first photometric redshift distribution for a large unbiased sample of 870um selected submillimeter galaxies (SMGs) with robust identifications based on observations with the Atacama Large Millimeter Array (ALMA). In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band, optical-near-infrared, photometry. We model the Spectral Energy Distributions (SEDs) for these 77 SMGs, deriving a median photometric redshift of z=2.3+/-0.1. The remaining 19 SMGs have insufficient optical or near-infrared photometry to derive photometric redshifts, but a stacking analysis of IRAC and Herschel observations confirms they are not spurious. Assuming these sources have an absolute H-band magnitude distribution comparable to that of a complete sample of z~1-2 SMGs, we demonstrate that the undetected SMGs lie at higher redshifts, raising the median redshift for SMGs to z=2.5+/-0.2. More critically we show that the proportion of galaxies undergoing an SMG phase at z>3 is 35+/-5% of the total population. We derive a median stellar mass for SMGs of Mstar=(8+/-1)x10^10Mo, but caution that there are significant systematic uncertainties in our stellar mass estimate, up to x5 for individual sources. We compare our sample of SMGs to a volume-limited, morphologically classified sample of ellipticals in the local Universe. Assuming the star formation activity in SMGs has a timescale of ~100Myr we show that their descendants at z~0 would have a space density and M_H distribution which are in good agreement with those of local ellipticals. In addition the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.Peer reviewe

    An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South : The Redshift Distribution and Evolution of Submillimeter Galaxies

    Get PDF
    Accepted by ApJ. 45 pages, 16 figuresWe present the first photometric redshift distribution for a large unbiased sample of 870um selected submillimeter galaxies (SMGs) with robust identifications based on observations with the Atacama Large Millimeter Array (ALMA). In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band, optical-near-infrared, photometry. We model the Spectral Energy Distributions (SEDs) for these 77 SMGs, deriving a median photometric redshift of z=2.3+/-0.1. The remaining 19 SMGs have insufficient optical or near-infrared photometry to derive photometric redshifts, but a stacking analysis of IRAC and Herschel observations confirms they are not spurious. Assuming these sources have an absolute H-band magnitude distribution comparable to that of a complete sample of z~1-2 SMGs, we demonstrate that the undetected SMGs lie at higher redshifts, raising the median redshift for SMGs to z=2.5+/-0.2. More critically we show that the proportion of galaxies undergoing an SMG phase at z>3 is 35+/-5% of the total population. We derive a median stellar mass for SMGs of Mstar=(8+/-1)x10^10Mo, but caution that there are significant systematic uncertainties in our stellar mass estimate, up to x5 for individual sources. We compare our sample of SMGs to a volume-limited, morphologically classified sample of ellipticals in the local Universe. Assuming the star formation activity in SMGs has a timescale of ~100Myr we show that their descendants at z~0 would have a space density and M_H distribution which are in good agreement with those of local ellipticals. In addition the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.Peer reviewe

    HerMES: the rest-frame UV emission and a lensing model for the z= 6.34 luminous dusty starburst galaxy HFLS3

    Get PDF
    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr–1, with the 95% confidence lower limit around 830 M ☉ yr–1. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 108 M ☉ and ~5 × 1010 M ☉, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (~3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ~ 6 or a dusty galaxy template at z ~ 2

    Detailed modelling of a large sample of Herschel sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDs

    Get PDF
    We have studied in detail a sample of 967 SPIRE sources with 5σ detections at 350 and 500 μm and associations with Spitzer-SWIRE 24 μm galaxies in the HerMES-Lockman survey area, fitting theirmid- and far-infrared, and submillimetre, spectral energy distributions (SEDs) in an automatic search with a set of six infrared templates. For almost 300 galaxies,we havemodelled their SEDs individually to ensure the physicality of the fits. We confirm the need for the new cool and cold cirrus templates, and also of the young starburst template, introduced in earlier work. We also identify 109 lensing candidates via their anomalous SEDs and provide a set of colour–redshift constraints which allow lensing candidates to be identified from combined Herschel and Spitzer data. The picture that emerges of the submillimetre galaxy population is complex, comprising ultraluminous and hyperluminous starbursts, lower luminosity galaxies dominated by interstellar dust emission, lensed galaxies and galaxies with surprisingly cold (10–13 K) dust. 11 per cent of 500 μm selected sources are lensing candidates. 70 per cent of the unlensed sources are ultraluminous infrared galaxies and 26 per cent are hyperluminous. 34 per cent are dominated by optically thin interstellar dust (‘cirrus’) emission, but most of these are due to cooler dust than is characteristic of our Galaxy. At the highest infrared luminosities we see SEDs dominated by M82, Arp 220 and young starburst types, in roughly equal proportions

    The clustering of submillimeter galaxies detected with ALMA

    Get PDF
    Previous studies measuring the clustering of submillimeter galaxies (SMGs) have based their measurements on single-dish detected sources, finding evidence for strong clustering. However, ALMA has revealed that, due to the coarse angular resolution of these instruments, single-dish sources can be comprised of multiple sources. This implies that the clustering inferred from single-dish surveys may be overestimated. Here, we measure the clustering of SMGs based on the ALESS survey, an ALMA follow-up of sources previously identified in the LABOCA ECDFS Submillimeter Survey (LESS). We present a method to measure the clustering of ALMA sources that have been previously identified using single-dish telescopes, based on forward modeling both the single-dish and the ALMA observations. We constrain upper limits for the median mass of halos hosting SMGs at $

    SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

    Get PDF
    We present the detection at 89 μm (observed frame) of the Herschel-selected gravitationally lensed starburst galaxy HATLAS J1429-0028 (also known as G15v2.19) in 15 minutes with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z = 0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared (IR) galaxy at z = 1.03. Is this high IR luminosity powered by pure star formation (SF) or also an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star formation dominated. We perform a 27-band multiwavelength spectral energy distribution (SED) modeling including the new SOFIA/HAWC+ data to constrain the fractional AGN contribution to the total IR luminosity. The AGN fraction in the IR turns out to be negligible. In addition, J1429-0028 serves as a testbed for comparing SED results from different models/templates and SED codes (magphys, sed3fit, and cigale). We stress that star formation history is the dominant source of uncertainty in the derived stellar mass (as high as a factor of ~10) even in the case of extensive photometric coverage. Furthermore, the detection of a source at z ~ 1 with SOFIA/HAWC+ demonstrates the potential of utilizing this facility for distant galaxy studies including the decomposition of SF/AGN components, which cannot be accomplished with other current facilities
    corecore